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Solitons with spherical and/or cylindrical symmetry in the interacting system of 
scalar, electromagnetic, and gravitational fields have been obtained. As a particular 
case it is shown that the equations of motion admit a special kind of solution 
with a sharp boundary, known as droplets. For these solutions, the physical 
fields vanish and the space-time is fiat outside of the critical sphere or cylinder. 
Therefore, the mass and the electric charge of these configurations are zero. 

1. I N T R O D U C T I O N  

Since the early history of elementary particle physics, attempts to con- 
struct a divergence-free theory have been undertaken. Mie (1912a, b) proposed 
a nonlinear modification of the Maxwell equations, with the nonlinear electric 
current of  the form j~ = (A~A~)aAw Within the scope of  this modification 
there exist regular solutions approximating the electron structure. 

Rosen (1939) considered a system of  interacting electromagnetic and 
complex scalar fields that also admitted the existence of localized particle- 
like solutions. Nevertheless, these two models suffered the same defect: the 
mass of  the localized object turned out to be negative. Recently it was shown 
that this defect of nonlinear electrodynamics can be corrected within the 
framework of general relativity (Chugunov et al., 1996). 

The aim of this paper is to consider a self-consistent system of  fields 
to obtain particle-like configurations in the framework of general relativity. 
We show that in the case of  an electromagnetic, scalar, and gravitational field 
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system with specific type of interactions there exist droplet-like solutions 
having zero electric charge and mass. It is noteworthy that the effective 
potentials in this case possess the confining property, i.e., create a strong 
repulsion on certain surfaces in configuration space. 

2. FUNDAMENTAL EQUATIONS 

As is known, there do not exist regular static spherically or cylindrically 
symmetric configurations within the framework of gauge-invariant nonlinear 
electrodynamics (Bronnikov and Shikin, 1985). One possible way to over- 
come this difficulty is the nonlinear generalization of electrodynamics, with 
the use of a Lagrangian explicitly containing the 4-potential A~, p~ = 0, 1, 
2, 3, thus breaking the gauge invariance inside a small critical sphere or 
cylinder. The introduction of terms depending explicitly on potentials in 
the electromagnetic equations presents the possibility to give an alternative 
explanation of such phenomena as inelastic photon-photon interactions (No- 
vello and Salim, 1979), galactic redshift anomalies (Schiff, 1969; Peckev et 
al., 1972; Goldhaber and Nieto, 1971), electric screening at low temperature 
in the limit of indirect interaction of photons with the thermal neutrino 
background (Woloshyn, 1983), the excess of high-energy photons in the 
isotropic flux (Ljubicic et al., 1979), avoidance of the Big Bang singularity 
(Novello and Heintzmann, 1983), and the origin of self-focused beam in the 
effective nonlinear vector field theory (Bisshop, 1972). The corresponding 
terms appear in our scheme due to the interaction between the electromagnetic 
and scalar fields. This interaction being negligible at large distances, the 
Maxwellian structure of the electromagnetic equations (and therefore the 
gauge invariance) is reinstated far from the center of the system. 

We choose the Lagrangian in the form (Bronnikov and Shikin, 1985) 

R 1 1 
L = 2K 16at F ~ F ~  + 8~ q~,~q~"~(1) (2.1) 

where K = 8"rrG is the Einstein gravitational constant and the function ~( I )  
of the invariant ! = A~A ~ characterizes the interaction between the scalar q~ 
and electromagnetic A~ fields. In the sequel the function xlt(l) will be viewed 
as arbitrary; thus the Lagrangian (2.1) defines the class of models parametrized 
by ~(I).  Schwinger (1951) used a special method to compute the effective 
coupling between a zero-spin neutral meson and the electromagnetic field 
using some functions of the electromagnetic field. Thus our approach to 
generate an effective Lagrangian generalizes the one proposed by Schwinger. 
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The particular choice of ~ ( I )  will be made to obtain droplet-like configura- 
tions. The field equations corresponding to the Lagrangian (2.1) read 

~3~ = --KT~ (2.2) 

1 0 (,,/rL---~g,~fsq~.f~) = 0 (2.3) 
x / r ' ~  oXe' 

1 a ( , ~ F , ~ )  _ (q~.~,~)~tA,~ = 0 (2.4) 
Ox ~ 

where ~ ;  = d ~ / d l  and w~. = R~. - 8~R/2 is the Einstein tensor. One can 
write the energy-momentum tensor of the interacting matter fields in the form 

T~ --- (l/4"tr)[qoCq~'v~(I) - Fr ~'~ + q~,,~q~"~xIt ;Ar  ~] 

_ _ 1 F~,aF,~a I (2.5) ~ [ ~ ~  q~.pq~'~xIt(1) 1 - ~  
.1 

3. CONFIGURATIONS W I T H  S P H E R I C A L  S Y M M E T R Y  

Searching for the static, spherically symmetric solutions to the system 
of equations (2.2)-(2.4), we consider the metric in the form (Bronnikov and 
Kovalchuk, 1980) 

ds 2 = e2~dt 2 - e2~d~ 2 - e2~[d02 + sin20 dqb 2] (3.1) 

with ~ being the radial variable. Let us now formulate the requirements 
to be fulfilled by particle-like solutions (PLS). These are (Bronnikov et  
al., 1993): 

(a) Stationarity [applied to the metric (3.1)], i.e., 

ot = a ( ~ ) ,  [3 = 13(~), ~ / =  ~/(~) 
(b) Regularity of the metric and the matter fields in the whole space-time. 
(c) Asymptotically Schwarzschild metric and corresponding behavior 

of the field functions. 
In view of requirement (a), it is convenient to choose the harmonic 

coordinate (D~ = 0) in (3.1) to satisfy the subsidiary condition (Bronnikov 
et  al., 1979) 

ot = 213 + ~/ (3.2) 

The corresponding coordinate in fiat space-time is just ~ = l/r. With the 
constraint (3.2) the system of Einstein equations (2.2) reads 

e-2'~(213 " -  U) - e -2~ = --KT ~ (3.3) 

e - 2 ~ U -  e -2~ = - -KTI  (3.4) 

e-2'~(13" + ~/' -- U) = - KT22 = -- KT 3 (3.5) 
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where U = ~,2 _{._ 2B'~/', and prime denotes differentiation with respect to 
Note that the field functions, as well as the components of the metric tensor, 

depend on the single spatial variable ~. Assuming the electromagnetic field 
to be determined by the time component Ao = A(~) of the 4-potential, one 
finds the unique nontrivial component of the field tensor F~0 = A', and the 
invariant I reduces to I = e-2"tA2(~). 

One can write the nonzero components of the energy-momentum tensor 
(2.5) as follows: 

T O = (1/8,rr)e-2,~[A,2e-2V + q~,2(~ _ 2Aae-av~D ] (3.6) 

T] = - T  2 = - T  3 = (l/8ar)e-2~ -2"~ - q~,a~] (3.7) 

Adding equations (3.4) and (3.5) and using the property T~ + T ] = 0, one 
obtains the differential equation 

~" + ~,' -- e2(13 +-0 = 0 

with the solution (Bronnikov, 1973) 

k l sh k~, k > 0 
e -(~+~) = ~(k, ~) = ~, k = 0 (3.8) 

k-1 sin k~, k < 0 

depending on the constant k. Notice that another constant of integration is 
trivial, so that ~ = 0 corresponds to the spatial infinity, where e ~ = 1 and 
e I~ = ~. Without loss of generality one can choose ~ > 0. 

The scalar field equation (2.3) has the evident solution 

q~' = CP ( I )  (3.9) 

where P(1) = I/V(/)  and C is the integration constant. Putting (3.9) into 
(2.4), one gets the equation for the electromagnetic field 

(e-2"VA') ' - C2pte-2VA = 0 (3.10) 

where the second term could be naturally interpreted as the induced nonlinear- 
ity. In view of (3.9), one rewrites the Einstein equation (3.4) and the result 
of adding the equations (3.3) and (3.4) as follows: 

, y '2  _~ _ G ( C 2 p  _ A,2e-2-r + K, K ----- k 2 sign k (3.11) 

"y" = Ge-2V(A '2 + C2A2pI)  (3.12) 

One can easily check that equation (3.11) is the first integral of equations 
(3.10) and (3.12). Eliminating the term (PIA)  between (3.10) and (3.12), one 
gets the equation 

"y"= G(AA'e-2"Y) ' (3.13) 
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with the evident first integral 

y '  = G A A ' e  -2v + Cl, Cl = const (3.14) 

Let us consider the simple case Cl = 0. Then from (3.14) we get 

e 2v = G A  2 + H, H = const (3.15) 

Substituting 3,' and e 2~ from (3.14) and (3.15) into (3.10), we find for A({) 
the differential equation 

A'E(GA 2 + H)  -2 = ( G C 2 P  - K ) / G H  (3.16) 

which can be solved by quadrature: 

y aA = - 
(GA 2 + H ) x / G C 2 p  - K 

~0 = const 

(3.17) 

It is clear that the configuration obtained has a center if and only if e ~ = 0 
at some ~ = ~c. One can show (Bronnikov et  al., 1979) that the conditions 
for the center ~c = ~ to be regular imply K = 0 and the following behavior 
of the field quantities in the vicinity of the point ~c = ~: 

~/' = O(~-2), A --+ Ac ~ % A' --+ 0 

~4p(i) ..4 0, 1~4Ip/I < co (3.18) 

In view of (3.18), we deduce from (3.14) that C~ = 0 in accordance with 
the earlier supposition. 

Now we can write the boundary conditions on the surface of  the critical 
sphere ~ = ~0: 

T~ = A = A' = 0, eV = 1, e~ = 1/~0 > 0 (3.19) 

Due to (3.19) and (3.15), we infer that H = 1. The condition K = 0 leads 
to k = 0 in (3.8) and the space-time (3.1) that fulfills the regul .arity conditions 
(3.18) takes the form 

1 [de ) 
ds  2 = ( G A  2 + 1) dt 2 ~2(GA2 + 1) \ ~2 + [dO2 + sin20 dd:2] (3.20) 

We can finally write A and q0 as follows: 

(GA 2 + l ) f f f i  = _+C(~ - ~ )  (3.21) 

,p = C I p de = f = f d-P aa G A  2 + 1 (3.22) 
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Let us now calculate the matter-field energy density: 

T O = (C2/8w)e-2'~[P(1 + e 2"1) + 2IPI(I)] (3.23) 

One can readily derive from (3.23) the energy Ef of  the matter fields: 

= f a3x  - gro el 
f A(fg--.4oo) 

= (C/2) dA e-3"~[x/~(1 + e 2"~) + 41(x/~)t ] (3.24) 
aA(~=0) 

Thus the equations for the scalar and electromagnetic fields are completely 
integrated. As one sees, to write the scalar (9o) and vector (A) functions as 
well as the energy density (T ~ and energy of the material fields (Ef) explicitly, 
one has to give P(I)  in explicit form. Here we will give a detailed analysis 
for some concrete forms of P(1). 

I. Let us consider P(1) in the form 

P(I)  = P0(kl - N)SR(kI) ,  2 -< s ~< 3 (3.25) 

where R(kI) is some arbitrary, continuous, positive-definite function, having 
nontrivial value at the center; X is the coupling parameter; N > 0 is some 
dimensionless constant that is equal to the value of hi  at the center. The 
other constant P0 is defined from the condition P = 1 at spatial infinity, 
= 0. For R = const one gets the simplest form of P(I)  that leads to regular 
solutions. In this case the energy density is positive if kl  >- N. 

(a) Choosing P(1) in the form 

P(1) = Po(M - N) 2 (3.26) 

we get 

•/ cth A(~ + 61) 
N 

A(~) = X - G ~  

where A = 
A(O) = m/q, with m and q being the mass and the charge of the system, 
respectively. In this case we get 

Po = (Xm2/q 2 - N) -2, km21q 2 > N 

Inasmuch v/-kmllql > x/-N, then B = x/--Gm/Iql > ~ = o-. Taking B < 
1 and a < I, we get the inequality 

(3.27) 

x/C2NPo(k - GN),  the integration constant 61 is defined from 

0 < ~ < 8 < 1  



Solitons of Nonlinear Scale Electrodynamics in GR 1481 

C 2 
e 2v = G A  2 + 1 = --~ 

[El = ( - F m F l ~  1/2 - 

70. 

Now we can rewrite Po in the form 

G z 
P0 = -~" (8 z - 0.2)-2 

The  metric  function e 2~, electric field, and the total energy of  the material  
field system can be written as 

cth2A (~ + ~1) + 1 (3.28) 

A , f N  ~2 
(3.29) 

x/h(l  -- o "2) shZA(~ + ~l) 

+ 20. + 4(82 + 80. + 0 .2 )  _ 3 

3 3(8 + 0.) 

l-0 .2 (I + 8)(i -- 0.)] 
+ 2(82 _ 0 .2 )  In (1 - -  8)(1 + (3.30) 

As one sees, 

q8 
Efl ~__,,, --'> - - ~  = m, Efl ~-->l --> co 

The infinite value of  Ef can be interpreted as the physical  reason for  the 
existence of  the limitation 8 < 1. 

(b) Let us consider the case with Ic = 0, choosing 

e(1) = Xl (3.31) 

At the spatial infinity, where I = I0 = mZlq 2, we have P = 1, which leads 
to h = q21m2, i.e., the coupling constant is connected with mass  and charge. 
In this case we get 

1 
A(O = ~ sh m(~ + ~1) (3.32) 

where, as in the previous case, ~l is defined f rom A(0) = m/q. The metric 
function e 2~, electric field, and the total energy of  the material  field sys tem 
can be written as 

C 2 
e 2~ = -~-cthZ[mC(~ + ~l)lq] (3.33) 

mC 2 ~2 ch [mC(~ + ~j)lq] 
IEI q2x/~ sh 2 [mC(~ + ~O/q] (3.34) 

E f = ~  38 ln(l  - 8 2  ) (3.35) 
,c/t_, 
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Thus one sees that 

Efl~<<n ~ m, Eying1 ~ 

II. A specific type of solution to the nonlinear field equations in flat 
space-time was obtained in a series of interesting articles (Werle, 1977, 1980, 
1981, 1988). These solutions are known as droplet-like solutions or simply 
droplets. The distinguishing property of these solutions is the availability of 
some sharp boundary defining the space domain in which the material field 
happens to be located, i.e., the field is zero beyond this area. It was found 
that the solutions mentioned exist in field theory with specific interactions 
that can be considered as effective, generated by initial interactions of 
unknown origin. In contrast to the widely known soliton-like solutions, with 
field functions and energy density asymptotically tending to zero at spatial 
infinity, the solutions in question vanish at a finite distance from the center 
of the system (in the case of spherical symmetry) or from the axis (in the 
case of cylindrical symmetry). Thus, there exists a sphere or cylinder with 
critical radius r0 outside of which the fields disappear. Therefore the field 
configurations have a droplet-like structure (Werle, 1977; Bronnikov et al., 
1991; Rybakov et al., 1994a). 

Let us now choose the function P(1) as follows (Rybakov et al., 1994b) 
(see Fig. 2): 

p ( j )  = j(l-~,~)[( 1 _ j ) l / o  _ jn/,q2(1 _ j )  (3.36) 

where J = GI, cr = 2n + 1, n = 1, 2, 3 . . . . .  Then on account of K = 0 
and H = 1 we get from (3.17) the following expression for A(~) (see Fig. 1): 

A(~<-~0) = 0 ,  

( [ ] } ~  
2C"//-G (~ - ~0) A(~ --> ~0) = (I/,,/G) 1 - exp 

(3.37) 

As one can see from (3.37), the conditions (3.18) for the center to be 
regular and the matching conditions (3.19) on the surface of the critical sphere 
are fulfilled if cr > 2. It is also obvious from (3.37) that for ~ < ~0 the value 
of the square bracket turns out to be negative and A(~) becomes imaginary, 
since cr is an odd number. Since we are interested in real A(~) only, without 
loss of generality we may assume the value of A(~) to be zero for ~ <-- ~0, 
the matching at ~ = ~o being smooth. 

Recalling that J = GA21(GA 2 + 1), we get from (3.37) that J(~) = 1/2 
and J(~0) = 0, thus implying 

P(I)I~== = P(1)l~=to = 0 (3.38) 
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Fig. 1. Perspective view of droplet-like solution. The configurations are plotted for h = 

1, x0 = 2, and (r = 3, 5, 7, 9. 

This  means  that at ~ = ~c = ~ and ~ = ~ ,  the interact ion funct ion W(I)  = 
1/P(I) is singular. It turns out  never theless  that the energy densi ty  T O is 
regular  at these points  due to the fact that it contains  W(1) as a mul t ip l ie r  in 
the fo rm 

e -  2aq) '2xlt = C2 e -  2a p(  l ) (3.39) 

which tends to zero as ~ --> fi~ or  ~ ---> t0. As  fol lows f rom (3.37), for  the 
l imit ing case  t0 = 0, when the cri t ical  sphere goes to the spatial  infini ty and 
the solut ion in quest ion is def ined at 0 -< ~ --< oo, it  appears  that at spat ial  

o. 14 PO) 

0.12 

0.I 

0 . 0 8  

0.06 

0 . 0 4  

0 .02  

o .5  i l ' . s  2 
Fig. 2. Perspective view of the inverse function to the interaction one [i.e., P(1)] that provides 
us with the droplet-like configurations (Fig. 1). As is seen from Fig. l, the stronger the 
interaction, the more localized is the corresponding droplet-like configuration. 
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infinity (6 = 0) A = 0 and P(I) = 0. In this case we obtain the usual soliton- 
like configuration not possessing any sharp boundary. 

It should be emphasized that at spatial infinity (~ = 0) one can compare 
the metric found with the Schwarzschild one and the electric field with the 
Coulomb one, thus determining the total mass m and the charge q of  
the system: 

Gm = -~f(O), q = -A'(O) 
Taking into account that e 2~ = GA z + 1, one can find through the use of 
(3.37) that for t0 = 0, A'(0) = - q  = 0 and ~/'(0) = -Gm = 0. Therefore, 
the total energy of the soliton-like system, defined as the sum of the material 
field energy and that of the gravitational field, vanishes. If now one chooses 
the integration constant t0 > 0, then the field configuration with the sharp 
boundary (droplet) appears. In this case for ~ --< t0 one obtains A(~) = 0 and 
e 2~ = 1, i.e., outside of the droplet the gravitational and electromagnetic 
fields disappear, which implies the vanishing of the total mass and the charge 
of the system. This unusual property makes the droplet-like object poorly 
visible for the outer observer. 

It should be emphasized that the total energy is localized in the region 
(to < ~ < o~), 

To~ ---> 0, To~ ---> 0 (3.40) 

namely, inside the critical sphere with the radius 

R = d~ e ~(~ = d~2{[1  - e-2Cv~{~-~ov.l~ + 1} 1/2 < co 

Taking into account that e 2~ = 1/(1 - J )  and e-3~dA = dJI2~/--~, we rewrite 
the total energy of  the material fields in terms of  J: 

C ~'12( d f f~  1~_ J )  
= 4 ---~-- + dJ  er 

The contribution of the first term of this equality is trivial for the choice of 
P(I) in the form (3.36), as in this case P(I)lo = P(1)lx/2 = 0. As P(I) is 
positive and J lies in the interval (0, 1/2), one estimates 

C (1/2 
Ee = ~--~ j0 i ~ j  d J > 0  

Note that we consider the constant C to be positive. Since we know that the 
total energy of the droplet-like object is zero, this inequality implies the 
negativity of its gravitational energy. Thus the droplet-like configuration of 
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the fields obtained is totally regular with zero total energy (including the 
energy of the proper gravitational field) and null electric charge and remains 
unobservable to one located outside the sphere with radius R (Rybakov et  
aL, 1992 1994b). In order to clarify the fact that the role of  the gravitational 
field in forming the droplet-like configuration is not decisive, it is worthwhile 
to compare the solution obtained with that in the flat space-time, described 
by the interval 

ds z = dt  2 - dr  2 - r2[d02 + sin20 dqb 2] 

In the latter case equation (2.3) admits the solution 

q~' (r) = - C P ( I ) / r  2 (3.41) 

Substituting (3.41) into (2.4), one finds that the equation for the electromag- 
netic field can be solved by quadrature: 

f dA=+_C(1 1), - r0 = const (3.42) 

Note that the droplet-like configuration A(r )  will be similar to (3.37) if one 
chooses a function P(1)  simpler than (3.36): 

P(1)  = JI-2/"(1 - jv~)2 ,  J = h i  (3.43) 

where h = const, cr = 2n + 1, n = 1, 2, 3 . . . . .  Then substituting (3.43) 
into (3.42), one gets the solution 

A(r )  = ~ 1 - exp - - - ~ - -  - --ro/_iJ (3.44) 

One can see from (3.44) that A(r) -- 0 as r ----- r0, i.e., the charge of  the flat 
space-time droplet configuration also vanishes. For this solution the regularity 
conditions at the center r = 0 and on the surface of the critical sphere r = 
r0 are evidently fulfilled. It similarly appears that for r = oo one finds the 
usual soliton-like structure with field vanishing as r ---) ~. The field energy 
Ef  is defined as follows: 

(a(0) A 0) 
Ef  = C dA (~/-P + IP/v / -P)  = C ~ l a l r o ~  (3.45) 

JA(r O) 

Considering that P I  = 0 both at r = 0 and r = r0, we arrive through (3.45) 
at Er --- 0. Thus in the flat space-time as well as for the self-gravitating 
system, the total energy and charge of the droplet-like configuration vanish. 
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4. CONFIGURATIONS W I T H  CYLINDRICAL SYMMETRY 

Obviously, from the viewpoint of physics, the most interesting case is 
the spherically symmetric one; nevertheless, in some cases it is necessary to 
study the two-dimensional, cylindrically symmetric regular solutions in the 
vicinity of the symmetry axis [vortexes (Nielsen and Olesen, 1973), stringlike 
solutions (Terletsky, 1977)]. These solutions can describe realistic objects 
such as fluxions (Abrikosov, 1957) or light beams (Zakharov et  al.,  1971) 
and can serve as the logical approximation to objects with toroidal structure 
(de Vega, 1978). Let us now search for static, cylindrically symmetric solu- 
tions to equations (2.2)-(2.4). In this case the metric can be chosen as follows 
(Bronnikov, 1979; Shikin, 1984): 

ds 2 = e2Vdt 2 - e2adx 2 - e 21~ d~b 2 - e 2~ dz  2 (4.1) 

The requirements to be fulfilled by soliton-like solutions in this case are 
(Shikin, 1995): 

(a) Stationarity [applied to the metric (4.1)], i.e., 

a = ,x(x),  13 = 13(x), ~ / =  "v(x), ~ = w(x)  

This means for (4.1) that all the components of the metric tensor depend on 
the single spatial coordinate x ~ [x0, x,], where Xa is the value of x on the 
axis of symmetry, defined by the condition exp[13(xa)] = 0, and Xo is the 
value of x on the surface of the critical cylinder. The coordinates z and tb 
take their standard values: z E [--oo, oo], qb E [0, 2"tr]. 

(b) Regularity of the metric and the matter fields in the whole space-time. 
(c) Localization in space-time (with finite field energy) 

e:= I dV < 

Requirement (c) assumes the rapid decreasing of the energy density of the 
material field at spatial infinity, which together with (b) guarantees the finite- 
ness of Ef. Let us note that Ey may be finite even for singular solutions on the 
axis. Requirement (b) means the regularity of material fields as well as 
the regularity of metric functions, which entails the demand of finiteness of 
the energy-momentum tensor of material fields all over the space. If the 
system considered contains scalar q~ and electric E (or magnetic H) fields, 
the regularity conditions on x = Xa take the form (Bronnikov, 1979) 

e I~ = 0; I',/I < ~; Ip~l ( oo; e2(13-a)(13') 2 = 1; e - 2 a ( ' y ' )  2 = 0 

{IEI = 0; IHIII < oo; IHll -- 0}; IT~I < ~ (4.2) 

where HII and H• are the longitudinal and transverse magnetic fields, respec- 
tively, defined as chronometric invariants (Mitskevich, 1969). In view of 



Solitons of Nonlinear Scale Eiectrodynamics in GR 1487 

requirement (a), it is convenient to choose the coordinate x in (4.1) to satisfy 
the subsidiary condition (Shikin, 1984) 

ot = 13 + ~ /+  IX 

which enables us to present the system of the Einstein equations in the form 

Ix"+ 13"-  V = --KT ~ e 2a (4.3) 

Ix'13' + 13'V' + ~'1 -z' = V = --KT~ e 2~' (4.4) 

~/" + 13" -- V = -KT2 z e 2~ (4.5) 

Ix" + ~/" - V = --KT 3 e 2'~ (4.6) 

As in the preceding section, the electromagnetic field is described by the 
time component of the 4-potential Ao(x)  = A ( x )  and by the component F~0 
= d A / d x  = A '  of the field strength tensor, and the energy-momentum tensor 
of interacting fields is defined by equations (3.6), (3.7). 

Adding equations (4.4) and (4.5) and using (3.7), one obtains the sim- 
ple equation 

~/" + 13" = 0 (4.7) 

with the solution 

13(x) + ",l(X) = C2x,  C2 = const (4.8) 

Notice that the second integration constant in (4.8) can be taken as trivial, 
since it determines only the choice of scale. 

In a similar way, the addition of equations (4.4) and (4.6) leads to 
the equation 

~/' + Ix" = 0 (4.9) 

with the solution 

Ix(x) + "V(x) = C3x,  C3 = const (4.10) 

whereas the subtraction of (4.5) and (4.6) gives 

13" - Ix " =  0 (4.11) 

with the solution 

13(x) - Ix(x) = Cax,  Ca = const (4.12) 

Solving equation (2.2) in the metric (4.1), one gets the same result as in 
(3.9), i.e., 

q~'(x) = CP(1 )  (4.13) 
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Substituting (4.13) into (2.4), one finds an equation for the electromagnetic 
field identical to (3.10), i.e., 

(e-2"tA') '  - C2Pte-Z'~A = 0 (4.14) 

where the second term could be naturally interpreted as the induced nonlinear- 
ity. Now, as in the previous case, we use equation (4.4) and sum equations 
(4.3) and (4.4), which in view of (4.8) and (4.10), take the form 

,~t2 __ C 2 C 3  = _ G ( C 2 p  _ A,2e-2-y) (4.15) 

' y "=  Ge-2"Y(A '2 + C2A2pt )  (4.16) 

Elimination of PIA  between equations (4.14) and (4.16) gives the equation 

~" = G(AA'e-2~) ' (4.17) 

with the evident first integral 

~1' = G A A ' e - 2 v  + Cl, Cl = const (4.18) 

Integrating (4.18) under the choice C1 -- 0, one again obtains 

e 2v = G A  2 + H, H = const (4.19) 

Finally, substituting ~/' from (4.18) and e 2~ from (4.19) into (4.15), one gets 
the equation for A(x): 

A '2 (GA 2 + H) -2 --- ( G C 2 P  - C2C3) /GH (4.20) 

Equation (4.20) can be solved by quadrature: 

I dA = +  1 
(GA s + H ) ~ / G C 2 P  - C2C3 _ ~ (x  - Xo) (4.21) 

Let us formulate regularity conditions to be satisfied by the solutions to 
equations (2.2)-(2.4) on the axis of symmetry defined by the value x = Xa, 
where exp[13(xa)] = O. Since according to the regularity conditions formulated 
earlier, I~/(xa)l < oo and I~(Xa)l < o% from (4.8) and (4.12) one gets I~(x) 
C2x --~ -oo  (whereas x~ = - ~  if C2 > 0 and Xa = + ~  if C2 < 0); [3(x) ~- 
C4x --> -oo  (whereas xa = -oo if C4 > 0 and xa = + ~  if Ca < 0). This 
leads to C2 = Ca, ~/(x) - -Ix(x), and ct(x) =- 13(x). As one sees, from ~/(x) 
-- Ix(x) it follows that C3 = 0. The regularity conditions are similar to 
(3.1 8) for the case of spherical symmetry, implying that the following relations 
hold as X ~ Xa = ~:  

"y ' -"~ O , A --~ A ,. =/= o% A ' ---> O 

e21C21xP(l) --~ O, e2~C21xllP11 < oo (4.22) 
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Boundary conditions on the surface of the critical cylinder x = xa can be 
written as follows: 

T~ = A = A '  = O, e v = 1, e f~ = e -Ic21x > 0 (4.23) 

The conditions (4.23) together with the relation e 2v = G A  2 + H imply that 
H = 1. Therefore the metric (4.1) that satisfies the regularity conditions reads: 

1 
ds 2 = ( G A  2 + 1) dfl  GA  2 +~1 [e2C2X(dx2 + d~b2) + dz2] (4.24) 

As in the previous case, we will study the system for different P(I ) .  

I. Note that some class of regular solutions can be obtained by choosing 
P ( I )  in the form 

P(1)  = Po(h I  - N ) S Q ( h I )  (4.25) 

where Q ( M )  is some arbitrary, continuous, positive-definite function having 
nontrivial value at the center; h is the coupling parameter; N > 0 is some 
dimensionless constant that is equal to the value of hl  at the center. The 
other constant, P0, is defined from the condition P = 1 at spatial infinity, 
x = _+ oo. For Q (hi)  = const one gets the simplest form of P ( I )  that leads 
to regular solitons. As in the spherically symmetric case, for the regular 
solutions, h >- GN.  

(a) Choosing P ( I )  in the form 

P ( I )  = e o ( M  - N )  ~ (4.26) 

we get 

(4.27) 

x /CZNPo(h  - G N ) ;  the integration constant xl is taken to be 

e2~ X ~  h c--~-bx (4.28) 

IEI = ICle~-fJP,/-P-~ (4.29) 

( or x/1 _ or2 1 + or~ 
h C  \v/]- 2 In (4.30) 

E J - 2 a , / -  6 _ors - -  

where b = 
trivial. The regularity condition implies b -> 1. The metric function e 2v, radial 
electric field, and the total energy of the material field system can be written as 
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where o .2 = GN/k < 1. As one sees, IEI ---) 0 as x ~ +-~. The  solution 
obtained satisfies all the regularity condit ions and is a solitonian one.  The  
density of  mass  Pm and the density of  effective charge Pe are 

fcons t ,  b = 1 
Pmlx~-~ ~ [0 ,  b > 1 

p,,lx~+~ ~ 0, b >- 1 

/2C2v/-G(1 - o.2)/Trtr, b = 1 
Pelx~-~ ~ [ 0 ,  b > 1 

pelx~+= ~ 0, b >-- 1 

The  total charge of  the sys tem is equal to zero. 

(b) Let  us consider the case with Ir = 0, choosing 

P(I) = Xl 

In this case we get 

(4.31) 

1 
A(x) = ~ sh(vC~Cx ) (4.32) 

The metric function e 2~ in this case reads 

e 2~ = cth2(v/-kCx) (4.33) 

which gives 

e2~'lx~+.~ --~ 1, e2"qx~_+0 ~ 

Inasmuch as e 2~ = e -2~'+2c2x, x -- xl = - ~  corresponds to one of  the axes 
of  the field configurations.  This axis is regular  if  , ~  > 1 and A(Xl) = 0 
and e 2"~(xo --- 1. So for  e2Vlx__,+0 --~ ~,  one gets e2alx__,_+0 ---) 0, i,e., x = x2 = 
0 corresponds to the second, singular axis. In this case the solution obtained 
is defined on -oo  _< x -< 0. At x ~ + ~ ,  e 2a ~ ~ and A(x) ~ O. This means  
that x = + ~  defines the spatial infinity. In this case the solution is defined 
on 0 --< x <-- ~ and possesses one singular axis corresponding x = 0. 

I I .  Let  us now obtain the droplet-l ike configuration.  Choosing P(I) in 
the fo rm (see Fig. 2) 

p ( j )  = jl-21~[( 1 _ j ) l /~  _ jl/~]2(1 _ j )  (4.34) 

where J = GI, o. = 2n + 1, n = 1, 2, 3 . . . . .  one can find an expression 
for A(x) which is similar to the one in spherically symmetr ica l  case (see Fig. 1): 

a (x )  = ( l /v / -G) ( l  - e x p [  2 C j - G  ( x - x 0 ) ] }  ~/2 (4.35) 
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As one can readily see from (4.35), the conditions (4.22) and (4.23) are 
fulfilled if IC21 --- C,,/--GRr. It is noteworthy that at x <-- Xo, A(x) -- 0 and the 
space-time is fiat, the gravitational field being absent (Rybakov et al., 1993). 

There is a significant difference between solutions (3.37) and (4.35). For 
the case of spherical symmetry the droplet-like solution can be transformed to 
the soliton-like one if the boundary t0 is removed by putting t0 = 0 (as in 
this case exp[13(~0)] = I/t0 = oo). On the contrary, for the case of cylindrical 
symmetry the removal of the boundary is equivalent to putting x0 = - ~ ,  as 
in this case exp[13(x0)] = exp(-IC21x0) = oo. Under this last choice the 
solution (4.35) takes constant value A(x) = 1/,,/~ and the soliton structure 
disappears. For the considered case, as well as for that of spherical symmetry, 
the density of the field energy is given by equation (3.23) and the linear 
density of energy is similar to (3.24): 

(uV 
-d 

Ef = (C/4) dA e-3~[,,/P(1 + e 2') + 41(,,/-P)I] (4.36) 
a0 

Substituting P(I) from (4.34) into (4.36), one can find that Ef is finite and 
the total energy Ef + E~ turns out to be zero. 

Let us now define the effective charge density Pe and total charge Q 
corresponding to the unit length on the z axis. In general from (2.4) one gets 
(Shikin, 1995) 

1 
j'~ = ~ (q~,f3q~'f3)~tA '~ (4.37) 

which for a static radial electric field leads to 

j o =  C2 
e-2('~+'~)PIA (4.38) 

Then for a chronometric invariant electric charge density Pe we have 

j0 C 2 
Pe -- ~go0 -- ~ e-(2~+~')PIA (4.39) 

The total charge is defined from the equality xl; 
Q = 2~r pex / - -~  dx (4.40) 

Putting the corresponding quantities into the foregoing equality, we obtain 
after some simple calculations 

a = 1 -23, i xoo ~-e A Ixa = 0 (4.41) 
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Now it is worthwhile to make again the comparison with the flat-space 
solutions of equations (2.3) and (2.4), using the interval 

ds 2= dt 2 _  dp2_ pZdqb 2 _ d z  2 

In this case the scalar field equation (2.3) admits the solution 

q0'(p) = CP(1)Ip, P(I) = 1/~(I),  C = const (4.42) 

Inserting (4.42) into (2.4), one can find the electromagnetic field equation, 
which admits solution in quadratures: 

I dA - ---Cln p = const (4.43) po 
Px/-P~ p0 ' 

Substituting P(I) from (4.34) in (4.43), one gets the solution of the droplet- 
like form: 

A(p) = (l/x/rk)[1 - (plpo)2Cq-X/*] ~/2 (4.44) 

One concludes from (4.44) that A(p >- P0) -- 0. This means that the electric 
charge of the system is zero. For the solution (4.34) the regularity conditions 
both on the axis p = 0 and on the surface of the critical cylinder p = P0 are 
fulfilled if C , /h  >-- o-. It is noteworthy that in the case of cylindrical symmetry, 
both in flat space-time and with account of the proper gravitational field, 
there do not exist any soliton-like solutions, as for the choice Po = oo the 
solution (4.44) degenerates into a constant: A(p) = l/v/h. The linear density 
of the field energy in flat space-time can be found from an expression similar 
to (3.23), and, as in the case of spherical symmetry, it is equal to zero: 

C IA o) 
Ef  = = o 

as expected. 

5. DISCUSSION 

Exact regular static spherically and/or cylindrically symmetrical particle- 
like solutions to the equations of scalar nonlinear electrodynamics in general 
relativity have been obtained. As a particular case, we found a class of regular 
solutions with sharp boundary (droplet-like solutions or simply droplets). It 
was shown that outside the droplet, gravitational and electromagnetic fields 
remain absent, i.e., the total energy and total charge of the configuration are 
zero. We underline once more the significant difference between the droplet- 
like solutions with spherical symmetry and those with cylindrical symmetry. 
In the first case there exists the possibility of continuous transformation of 
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the droplet-like configuration into the solitonian one by transporting the sharp 
boundary to infinity. There is no such possibility for the second case, and 
the soliton-like configuration disappears when the boundary is smoothed 
tending to infinity. We intend to study further the interaction processes of 
droplets with external electromagnetic and gravitational fields and also the 
scattering of photons and electrons on droplets. 
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